Small-Angle Scattering Short Course 2008
 "Beyond \mathbf{R}_{G} "

June 28-July 2, 2008
Advanced Photon Source, Argonne National Laboratory

The objective of the Small-Angle Scattering Short Course 2008 is to raise the capabilities of the smallangle scattering (SAS) community by providing an intermediate-level course for those in need of a better understanding of SAS theory, and techniques utilized at the APS.

The SAS short course offers an overview of SAS theory, capabilities, and data reduction and analysis tools to enable the community to submit highly effective beamtime proposals and to facilitate better utilization of the resources at the APS.

The course includes hands-on experiments at a selected APS smallangle x-ray scattering facility, and data reduction and evaluation.

Participants are expected to have attained at least a post-doctorallevel education and are encouraged to have a defined experimental program so that they can collect data for a set of samples that they bring.

Lecturers will be available during hands-on workshops for one-on-one discussion and experiments. A CD (for Windows systems) with examples of data reduction and analysis software, which participants will be able to use during and after the workshop, will be provided. Participants are encouraged to bring their own notebook computers.

SEe OTHER SIDE FOR course information

Course Schedule

June 28: (Optional) Experiments
June 30-July 2: Lectures, data reduction, and modeling

SyLLabus

Small-Angle Scattering Fundamentals
Sample Preparation and Experiments
Overview of Available Instrumentation and Techniques
Data Reduction Tools
Data Analysis Tools
Scientific Lectures on SAS in Materials Science, Chemistry, Biology, and Polymer Science
Strategies to Write Successful Beam-Time Proposals

Speakers

Dale Schaefer (University of Cincinnati)
Sunil K. Sinha (University of California, San Diego)
Thiyaga P. Thiyagarajan (Argonne)
David Tiede (Argonne)
Randall E. Winans (Argonne)
Byeongdu Lee (Argonne)
Jan Ilavsky (Argonne)
Peter R. Jemian (Argonne)

Participating beamlines

Bonse-Hart USAXS: 32-ID (XOR, http://usaxs.xor.aps.anl.gov)
Pinhole SAXS: 5-ID (DND-CAT, http://www.dnd.aps.anl.gov/) 12-ID (XOR, http://www.bessrc.aps.anl.gov/) 18-ID (Bio-CAT, http://www.bio.aps.anl.gov/)
Details on the beamlines: http://small-angle.aps.anl.gov/aps_beam_lines.html

Experimental Techniques

USAXS (32-ID), Materials Science SAXS, Bio SAXS

Software

"Irena" \& "Nika" (http://usaxs.xor.aps.anl.gov/staff/ilavsky/index.html) NIST SAS package (http://www.ncnr.nist.gov/programs/sans/data/red_anal.html) ATSAS (http://www.embl-hamburg.de/ExternalInfo/Research/Sax/software.html)

Lllustrations

Background: USAXS data from monosized distribution of silica spheres (courtesy of Jan Ilavsky, Argonne).
Top image: Small-angle scattering from aerogel as a function of axial or radial strain (courtesy of Johannes Pollanen, Northwestern University).
Middle image: Speckle pattern from coherent beam scattering of an aerogel (courtesy of L. Lurio, Northern Illinois University).
Bottom image: Key polyethylene crystalline and lamellae deformation mechanisms (courtesy of Brian Landes, Dow Chemical).

